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Noncommunicable disease (NCD) scenario models are an essential part of the public health toolkit, allowing for an estimate of
the health impact of population-level interventions that are not amenable to assessment by standard epidemiological study designs
(e.g., health-related food taxes and physical infrastructure projects) and extrapolating results from small samples to the whole
population. The PRIME (Preventable Risk Integrated ModEl) is an openly available NCD scenario model that estimates the effect
of population-level changes in diet, physical activity, and alcohol and tobacco consumption on NCD mortality. The structure and
methods employed in the PRIME are described here in detail, including the development of open source code that will support a
PRIME web application to be launched in 2015. This paper reviews scenario results from eleven papers that have used the PRIME,
including estimates of the impact of achieving government recommendations for healthy diets, health-related food taxes and
subsidies, and low-carbon diets. Future challenges for NCD scenario modelling, including the need for more comparisons between
models and the improvement of future prediction of NCD rates, are also discussed.

1. Introduction

Noncommunicable diseases (NCDs) are the largest cause of
ill health and mortality, responsible for 54% of disability
adjusted life years lost in 2010 globally and over 80% in
the developed world [1]. In Europe, cardiovascular diseases,
cancer, and respiratory diseases account for 76% of all deaths
[2]. Much is known about the epidemiology of NCDs thanks
to pioneering work investigating causes of disease including
ecological correlation studies [3], case control studies [4, 5],
prospective cohort studies [5–8], and randomised controlled
trials [9, 10]. This broad body of evidence has allowed us
to understand how an individual’s lifestyle behaviour affects
their risk for NCD, which in turn has allowed for the
development of diagnostic tools such as the Framingham
Risk Score [11] and the QRISK score [12]. Similar techniques
that are used to combine risk from different behaviours in
individuals can also be used to assess the total risk of disease

attributable to behavioural risk factors in a population, and
these estimates can then be used to estimate the change in
NCD riskwithin a population under counterfactual scenarios
where the distribution of behavioural risk factors within the
population is changed.

This has allowed for the development of a number of
NCD scenario models such as the PRIME [13], the CHD
Policy Model [14], and the ACE-Obesity model [15] and
similar work considering improvements in physical inactivity
[16], IMPACT [17], the RIVM DYNAMO model [18], and
the UK Health Forum microsimulation model [19]. The
purpose of these models is to estimate the impact on NCD
morbidity and mortality of population-wide interventions
aimed at improving health-related behaviour. The results
of scenario modelling can be useful for a number of rea-
sons. They can help with priority setting by comparing the
health impact of changes in different behavioural risk fac-
tors, thereby identifying which risk factors could potentially
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deliver large health gains. For example, models can estimate
the population health impact of achieving different dietary
recommendations on the basis of the amount of disease
within the population and current dietary patterns within
the population. Such analyses can indicate whether achieving
the population dietary goal for fruit and vegetables or the
population dietary goal for salt would have a bigger impact
on NCD mortality, for example, [20]. Scenario modelling
can estimate the effectiveness of public health interventions
when randomised trials are either impractical or unethical,
for example, in the case of proposed taxes on sugar-sweetened
beverages, where a randomised trial would involve ran-
domising people, shops, or areas to receive increases in food
prices. Scenario modelling can also be useful in identifying
and mapping uncertainty in order to inform future research
agenda. For example, a model of the impact of minimum
pricing on alcohol consumption [21] and subsequent health
outcomes involves a number of stages and assumptions:
modelling the effect of changes in price on alcohol purchases
(via price elasticities), modelling the effect of changes in
purchases in changes in consumption, estimating the baseline
distribution of alcohol consumption in the population, and
modelling the effect of changes in alcohol consumption on
the incidence of alcohol-related disease. Suitable analytical
techniques, including sensitivity analyses and the production
of tornado plots, can demonstrate how uncertainty in each of
these areas affects the confidence in the final scenario results,
thereby indicating where more research is needed in order to
build a stronger evidence base.

A well-designed and transparent NCD model can act as
a synthesis of current epidemiological knowledge, providing
answers to “given what we already know, what if. . .” questions
and scenarios. In order to have faith in the results of models,
the structure must be transparently described and open to
scrutiny, but due to their internal complexity NCD scenario
models are often difficult to describe within the restrictions
of health journals and difficult to share with peer reviewers.
ThePreventable Risk IntegratedModEl (PRIME) is described
in this paper in detail and will be freely available for use
as a web application from 2015 and available on request
from the authors in advance. The source code supporting the
PRIME web application will also be made freely available for
download.

The structure of this paper is as follows. First, the struc-
ture of the PRIME and its potential use as an epidemiological
tool are described.Then the detailed methods supporting the
PRIME are described followed by the development of the
source code for the PRIME web application. The following
section provides a review of previous studies that have
used the PRIME, or forerunners of the model. Then future
development of the PRIME is described, and the paper
concludes with a discussion of challenges in the field of NCD
scenario modelling.

2. The Structure of the PRIME

The PRIME is a NCD scenario model that links behavioural
risk factorswithNCDmortality either directly ormediated by
bodymass index (BMI), blood cholesterol, or blood pressure.

With a few exceptions (described under “Statistical Methods
Used by the PRIME”), each of the links in the PRIME is
parameterised by published meta-analyses of epidemiologi-
cal studies: prospective cohort studies for links that terminate
with NCD mortality and randomised controlled trials for
links that terminate with either blood cholesterol or blood
pressure. The model contains twelve behavioural risk factors
covering the domains of diet, physical inactivity, alcohol
consumption, and tobacco consumption. There are twenty-
four health outcomes included in the PRIME, primarily
cardiovascular diseases and cancers, but also kidney disease,
liver disease, and chronic obstructive pulmonary disease.The
structure for the PRIME is shown in Figure 1.

The PRIME is designed to estimate the impact on pop-
ulation NCD mortality of changes in the distribution of
behavioural risk factors within that population. The user
of the PRIME must enter age and sex specific estimates
of the annual number of deaths from each NCD included
in the model for the population of choice, as well as age
and sex specific estimates of the number of people living
in the population. They must then describe the baseline
distribution of behavioural risk factors for their population,
usually using microdata from a national health survey to
estimate the mean and standard deviation of the variables of
interest. The PRIME allows for age and sex specific estimates
of behavioural risk factors refined up to five-year age bands—
in practice most national health surveys are not adequately
powered to estimate distributions at that level of refinement,
so the user can choose a broader age range for the baseline
input. Once the PRIME is suitably parameterised with this
baseline data, the user can then enter any counterfactual sce-
nario that they chose. A counterfactual scenario consists of a
change in the distribution of one or more age and sex specific
behavioural risk factor distributions. These counterfactual
scenarios could be data driven, for example, applying the
results of a change in food consumption due to a tax scenario
estimated using price elasticity data [22], or theory-based,
for example, estimating the impact of achieving a theoretical
minimum risk distribution [23, 24]. Once the counterfactual
scenario has been entered, the PRIME estimates the change in
the annual number of NCD deaths between the baseline and
counterfactual scenarios. Uncertainty intervals are calculated
based on 5,000 iterations of a Monte Carlo analysis which
allows the epidemiological parameters to randomly vary
according to the distribution described in the literature. A
complete list of parameters used in the PRIME is provided
in Table 1.

The structure of the PRIME was designed in order to
minimise the risk of double counting of effect size, by includ-
ing epidemiologic parameters that have been appropriately
adjusted for other behavioural risk factors. For example,
the link between physical activity and health outcomes
(described in more detail below) operates via two pathways:
by influencing body weight and by the direct link between
physical activity and health outcomes. The parameters used
for the direct link are taken from meta-analyses where the
relative risk included in the meta-analysis had been adjusted
for body weight. In most cases, the association between the
behavioural risk factor and the health outcome is modelled
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Figure 1: Schematic diagram of the PRIME.

directly without adjustment for any mediating variables. For
example, the link between alcohol consumption and coronary
heart disease (CHD) is modelled directly without adjustment
for the effect of alcohol on blood pressure—this implies
that including a second link between alcohol consumption
and blood pressure would introduce double counting since
changing alcohol consumption levels would affect CHD rates
via two pathways. Where mediating variables are modelled
in the pathway (e.g., salt consumption to blood pressure to
CHD), the corresponding direct association between the risk
factor and the disease is either not modelled or is modelled
using results adjusted for the mediating variable. Despite
these attempts, it is likely that double counting remains in
the model, as statistical adjustment in observational studies
is unlikely to account for all potential confounding factors
particularly when based on measurements taken at one time
point only [41].

We used a set of inclusion criteria to decide whether or
not to include a risk factor-disease relationship within the
PRIME. These criteria were as follows.

(1) Evidence for the relationship must be shown in a
meta-analysis of either prospective cohort studies or
randomised controlled trials, with an effect size sig-
nificantly different to the null hypothesis (𝑃 < 0.05)

(NB: this criterion was relaxed for smoking-disease
relationships as there were no meta-analyses avail-
able).

(2) The relationship must not be a comparison of “high
risk” versus “low risk” groups, where the level of
exposure in high and low risk groups is ill-defined.

(3) The health outcome must be a NCD (e.g., we do not
include the relationship between alcohol consump-
tion and road traffic accidents).

(4) The health outcome must make a substantial contri-
bution to NCCD mortality. In practice, we used the
threshold that the NCDmust have resulted in greater
than 500 mortalities in the UK in 2006.

One consequence of these inclusion criteria is that the PRIME
does not estimate the total impact of all health outcomes
attributable to each behavioural risk factor.

The PRIME uses methods that were developed for the
Global Burden of Disease (GBD) project [23, 42, 43]. The
model uses data on the baseline and counterfactual distri-
butions and the relative risk linking behaviours and disease
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outcomes to calculate a series of population attributable
fractions (PAFs) using the general formula:

PAF =
∫RR (𝑥) 𝑃 (𝑥) 𝑑𝑥 − ∫RR (𝑥) 𝑃 (𝑥) 𝑑𝑥

∫RR (𝑥) 𝑃 (𝑥) 𝑑𝑥
, (1)

where RR(𝑥) is the relative risk of disease for risk factor
level 𝑥, 𝑃(𝑥) is the number of people in the population with
risk factor level 𝑥 in the baseline scenario, and 𝑃(𝑥) is the
number of people in the population with risk factor level 𝑥 in
the counterfactual scenario [44]. The PAFs for different risk
factors are combined multiplicatively in the PRIME; that is,

PAFTOT = 1 −
𝑛

∏

𝑖=1

(1 − PAF
𝑖
) , (2)

where PAFTOT is the final PAF for a disease after all PAFs
for risk factors 1 to 𝑛 have been combined. For each disease
included in PRIME, the age and sex specific final PAFs are
then applied to the annual number of deaths in the baseline
situation in order to calculate the change in number of deaths
in the baseline situation.

Risk factor levels are converted to discrete bins in the
internal calculations conducted by the PRIME. The integral
equations described in (1) above are replaced by finite sums,
where the relative risks are assumed to be equal over a small
range, or “bucket,” and all of the population within that
bucket is assumed to have the same risk factor level.

3. Statistical Methods Used by the PRIME

There are six different types of links between risk factors and
health outcomes included in the PRIME that are described in
this section. These are links between

(1) continuous risk factor and a health outcomemediated
by a single RR parameter,

(2) continuous risk factor and a health outcomemediated
by categorical RR parameters,

(3) categorical risk factor and a health outcomemediated
by categorical RR parameters,

(4) energy intake, physical activity, and BMImediated by
steady state body weight equations,

(5) salt and blood pressure mediated by RCT results,
(6) fatty acids and cholesterol mediated by RCT results.

3.1. Continuous Risk Factor and a Health Outcome Mediated
by a Single RR Parameter. For most of the links included
in the PRIME, the risk factor is continuous and bounded
at zero (e.g., amount of fruit consumed per day) and the
RR used to parameterise the relationship between the risk
factor and a disease outcome describes the change in risk
for a unit increase in the risk factor (e.g., change in risk for
each extra portion of fruit consumed) across a given range,
usually the range of measures of the risk factor found in the
reviewed literature. For these links, the PRIME first describes
the distribution of the risk factor within the population

in both the baseline and counterfactual scenarios. It does
this by assuming an underlying distribution for the risk
factor (usually a lognormal distribution as this distribution
is bounded at zero) which is then parameterised by up to
three parameters: the mean value of the risk factor in the
population, the standard deviation, and, when necessary, the
percentage of the population with a zero value (e.g., for
alcohol consumption, the PRIME estimates the distribution
of alcohol consumed in the population in g per day of alcohol,
after first removing alcohol abstainers from the distribution).
Using the parameterised distributions, the PRIME then
divides the population into the specified buckets for the risk
factor. The RR parameter is then used to estimate the RR of
the health outcome in each of the buckets using the following
general formula:

RR
𝑖
= RR(𝑥−𝑦)/𝑢, (3)

where 𝑥 is the midpoint for bucket 𝑖, 𝑦 is the midpoint for
the first bucket (assigned to have an RR of 1), and 𝑢 is the unit
increase reported in the literature. For example, the colorectal
cancerRR for a 10 g/d increase in fibre is 0.88 [29].ThePRIME
breaks fibre intake into 22 buckets, each 2 g/d wide, with 4–
6 g/d fibre intake as the lowest intake bucket (used as the
reference, with RR of 1), since this was the lowest intake seen
in the studies included in themeta-analysis.TheRRestimated
for the 3rd bucket (8–10 g/d) is 0.88(9−5)/10 = 0.95.

Using the RR in each bucket and the total number of
deaths from the disease, the death rate per 1000 is calculated
for each bucket (DR

𝑖
, with DR

1
referring to the death rate in

the baseline level) using the following formula where𝐷 is the
totalmortality from the disease,𝑝

𝑖
is the population in bucket

𝑖, RR
𝑖
is the relative risk in the bucket, and 𝑛 is the number of

buckets:

DR
1
=

1000𝐷

𝑝

1
+ ∑

𝑛

𝑖=2
(𝑝

𝑖
⋅ RR
𝑖
)

,

DR
𝑖
= DR
1
⋅ RR
𝑖
.

(4)

In the counterfactual scenario, it is assumed that the death
rates in each bucket remain the same, but the population in
the bucket changes. The PRIME estimates the consequent
change in the number of deaths between baseline and
counterfactual, which is the main outcome of the model.

The direct links between physical activity and health
outcomes included in the PRIME are parameterised in a
similar way, but with a slightmodification.Themeta-analyses
used to parameterise the physical activity links suggest that
the dose-response relationship is not log-linear as described
previously but follows a 0.25 power transformation (these
meta-analyses are currently unpublished but follow a similar
transformation as described byWoodcock et al. [45]). Essen-
tially, this transformation ensures that the effect of physical
activity on health diminishes more quickly than a log-linear
transformation allows. The distribution of physical activity
is parameterised in the PRIME as MET hours per week in
moderate or vigorous physical activity (MVPA) and requires
estimates of mean and standard deviation of MET hours per
week and the percentage of the population who are sedentary
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(i.e., having zero MET hours per week of MVPA). The RR in
bucket 𝑖 of MET hours per week is then parameterised from
the RR described in the meta-analyses using the following
formula, where 𝑥 is the midpoint of bucket 𝑖 and 𝑢 is the unit
increase in physical activity reported in the meta-analysis:

RR
𝑖
= 1 + (

RR − 1
𝑢

0.25
)𝑥

0.25
. (5)

3.2. Continuous Risk Factor and a Health Outcome Medi-
ated by Categorical RR Parameters. Many of the links in
the PRIME are parameterised by a set of categorical RRs
which are assumed to be constant over the risk factor range
that they describe. This is the case for many of the links
between alcohol consumption and disease, where the J-
shaped relationship cannot easily be parameterised by a single
RR estimate. In these instances, the buckets used for the
PRIME are set to be the same size as the categories for which
the RRs are provided, and the PRIME proceeds as described
above, using the RRs for each bucket that are reported in the
meta-analysis.

3.3. Categorical Risk Factor and a Health Outcome Mediated
by Categorical RR Parameters. Tobacco smoking is the only
categorical risk factor that is included in the PRIME. Three
categories are used: current smoker, former smoker, and
never smoked.The RRs for the relationship between smoking
and health outcomes are drawn from large prospective cohort
studies [33–37].The PRIME proceeds as above, but with only
three buckets representing the three smoking categories.

3.4. Energy Intake, Physical Activity, and BMI Mediated by
Steady State Body Weight Equations. The PRIME calculates
the change in the distribution of BMI in the counterfactual
scenario by using equations derived by Christiansen and
Garby [39] to estimate the new steady state body weight that
would be produced after a change in energy balance (i.e.,
either changes to total energy intake or total energy output).
The equation used in the PRIME is given below, where BW is
steady state body weight measured in kg, EI is energy intake
measured in MJ per day, and PAL is physical activity level,
a ratio of the total energy expenditure over resting energy
expenditure. In these equations 𝑘 is a constant term that is
based on both fundamental principles of energy conservation
and directlymeasured data and takes the value of 17.7 formen
and 20.7 for women:

ΔBW = 𝑘 ⋅ Δ ( EI
PAL
) . (6)

This change in body weight can be applied to baseline
population estimates of height and BMI distribution to
estimate the counterfactual BMI population distribution.

The energy intake parameter is directly entered by the
user. The PAL parameter is estimated by the PRIME on the
basis of the physical activity distribution described earlier.
The PRIME also requires estimates of the intensity of both
moderate to vigorous physical activity (MVPA) and non-
MVPA within the population, which the user can define.

A sensitivity analysis has shown that changes in BMI (and
hence BMI-related health outcomes) in the PRIME are
sensitive to the selection of the intensity parameters [46], so
users should select these parameters carefully. In this sensi-
tivity analysis, it was shown that applying a 5METhr/week
increase in physical activity to the UK population resulted
in differences in average bodyweight ranging from 0.4 kg to
0.7 kg depending on the selection of the intensity of physical
activity during MVPA and non-MVPA time.

3.5. Salt and Blood Pressure Mediated by RCT Results. The
relationship between salt intake and blood pressure is medi-
ated in PRIME by a meta-analysis of randomised controlled
trials of modest salt reduction on free living individuals
with duration of at least four weeks [10]. The meta-analysis
estimated that a 6 g/d reduction in salt intake would result
in a 5.8mmHg reduction in systolic blood pressure. In the
PRIME, this parameter is used to convert the distribution
of salt consumption in the population to a distribution of
“salt-related blood pressure” (e.g., those in the population
who consume 4 g/d salt have salt-related blood pressure
that is 5.8mmHg less than those who consume 10 g/d). The
salt-related blood pressure variable is then associated with
health outcomes using the same methods as those described
above.

3.6. Fatty Acids andCholesterolMediated by RCTResults. The
link between fatty acid intake and blood cholesterol levels is
parameterised in PRIME in a similar way to the link between
salt and blood pressure. The mutually adjusted parameters
linking total fat, saturated fat, monounsaturated fatty acids
(MUFAs), polyunsaturated fatty acids (PUFAs), and dietary
cholesterol with blood cholesterol levels are taken from a
meta-analysis of controlled lab-based feeding studies [38]. In
order to convert five distributions of fatty acid intake into a
single distribution of “fatty acid-related blood cholesterol,”
we assumed that the fatty acid intakes within a population
are normally distributed. We then combined mean values of
these fatty acid intakes using the following equation, where
fBC is mean fatty acid-related blood cholesterol, 𝑓

𝑖
is mean

intake of fatty acid 𝑖, and𝛼
𝑖
is themutually adjusted parameter

drawn from the meta-analysis:

fBC =
5

∑

𝑖=1

𝛼

𝑖
⋅𝑓

𝑖
. (7)

To estimate a distribution of fatty acid-related blood choles-
terol in both the baseline and counterfactual scenarios, it is
necessary to estimate the variance by combining estimates
of the variance in intake of the individual fatty acids. To do
this, we use a covariance matrix derived from an analysis of
the Health Survey for England 2006 [47] (NB: users are free
to change the values of this covariance matrix to suit other
populations) and combine the variances using the general
formula for adding the variance of normally distributed
variables𝑋 and 𝑌 given below, where 𝜎

𝑋+𝑌
is the variance of

the combined distribution, 𝜎
𝑋
is the variance of distribution
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𝑋, 𝜎
𝑌
is the variance of distribution𝑌, and 𝜌 is the correlation

coefficient between distributions𝑋 and 𝑌:

𝜎

𝑋+𝑌
=
√
𝜎

2

𝑋
+ 𝜎

2

𝑌
+ 2𝜌𝜎

𝑋
𝜎

𝑌
.

(8)

4. Development of Source Code for the PRIME
Python Program and Web Application

To improve the availability, utility, and transparency of
PRIME, the model has been rewritten and converted to a
custom computer program, written in Python. This program
has been used to create a web application to provide an acces-
sible and easy-to-use interface to PRIME. The code for this
program has been packaged and released as an open-source
project under a BSD (Berkeley Software Distribution—
http://opensource.org/licenses/bsd-license.php) licence, for
users to analyse, improve, and integrate into their own sys-
tems as desired. Both code and documentation are available
at https://github.com/cpnp/prime.

The underlying data model has been restructured and
rewritten, based on the original Excel model, and is now an
object-oriented Python program. Figure 2 shows an overview
of the data model and data flow within the program.
Although the project and code may change over time, this
core structure will remain a central reference. The program
has been written using Python (v 2.7.6), a powerful and
flexible computer language that can be used to create different
types of application, including command line, desktop, and
web applications. In addition, the program uses a number
of well-established 3rd party Python libraries, including
numpy and scipy [48] that extend its mathematical and
scientific capabilities. SQLAlchemy [49], another Python
library, is an object-relational mapper, which makes it pos-
sible to use different database engines to store the under-
lying population and mortality data, and handles database
interactions. The default database is MySQL (v 5.6.17). More
information on Python code libraries can be found here:
http://www.scipy.org/scipylib/citing.html.

Testing of the codebase is carried out whenever new
components are added to ensure consistent and accurate
results. This includes a set of tests to compare results given
by the Python model to those results given for baseline data
by the Excel model. A further advantage of rewriting PRIME
in Python is that the time taken to run Monte Carlo analyses
has been significantly reduced compared to the time taken
for Excel macros to run the same calculations. The reduction
is in the order of 15 minutes to ∼5 seconds, depending on
the exact queries and calculations being run. Full details
of benchmarked calculations will be available in the Prime
documentation in the GitHub repository.

Development of this Python package provides the ability
to run the model in a number of different ways, including
via a web application. The interactive web application allows
users to run the model in any web browser, from anywhere
with an Internet connection. It has easy controls for adjusting
values of different variables, outputting resulting changes
to population mortality and outcomes in an easy to use
graphical interface. An overview of the design for the web
application is shown in Figure 3. Two main groups of user

for the web application are anticipated, who have different
requirements and will access different parts of the web
application according to their needs.The first of these groups
is composed of users whowish to use themodel to investigate
the overall effect of a limited subset of variable changes.
This group may comprise policy makers and public health
professionals.The second group of users is those who wish to
usemore advanced features and perhaps investigate the inner
workings of the model a little more. This group may contain
other researchers who wish to use their own population
datasets, alter some of the more complex variables in the
model, run Monte Carlo analyses, and investigate in more
detail the specifics of how the model works, for example,
what assumptions are made, what distribution types are
used, and which details from what publications are used in
specific sections of the model. The web application offers the
flexibility of providing specific features required by the user
in an accessible and interactive format.

5. Review of Studies That Use the PRIME

To date, eleven papers have been published in peer-reviewed
journals that have used the PRIMEor precursors of themodel
that were constructed during the development process of the
model [13, 20, 22, 40, 50–56]. Earlier versions of the PRIME
were sometimes referred to as DIETRON—here we refer to
all the models used in these papers as PRIME. In this section,
we review the results that have been produced by the PRIME.
Details of the papers that are reviewed in this section are
provided in Table 2, ordered chronologically.

Three of the papers have considered the health impact
of achieving government public health recommendations—
dietary targets in the UK [20], dietary targets in Canada
[50], and safe alcohol consumption levels in the UK [13]. Of
the more than 230,000 diet-related mortalities in the UK in
2007, over 33,000 (15%) could have been delayed or averted
if dietary recommendations for fruit and vegetables, fibre,
total fat, and saturated fat and salt were achieved.The biggest
reduction in mortality would be produced by achieving the
recommended five portions of fruit and vegetables per day
(over 15,000 deaths averted) followed by reductions in salt
consumption (over 7,500 deaths averted). These different
health impacts are partly due to the distance between the
dietary variable and the recommendation and partly due
to the relationship between the risk factor and disease, and
different results would be produced if different dietary targets
were set. Since dietary recommendations are based on setting
a realistic goal that individuals within the population feel is
achievable and do not represent an epidemiological “mini-
mum risk” setting [58], comparing results between dietary
risk factors is somewhat arbitrary. This is demonstrated by
the health impact of achieving dietary recommendations in
Canada, where 36% of the 85,000 diet-related mortalities
in 2004 could be averted by achieving dietary recommen-
dations. This big increase compared to the UK figures is
due to the more ambitious nature of the Canadian dietary
recommendations, which recommend 8–10 portions of fruit
and vegetables per day [59] compared to only 5 portions
of fruit and vegetables for the UK, and 30–38 g/d fibre



12 Scientifica

Counterfactual data Distribution data
- Exposures:

Data provided by the model
Data calculated by the model

Notes
Data flow

- Combinations

- SD/mean
- Nonconsumption (%)

- For an exposure:

- SD
- Nonconsumption (%)
- Combination

Population data

Population size

Population mortality

User User

Distributions Relative risk

Death rate

If compound

Baseline/counterfactual deaths
(matrix: population subset versus 

variable bin)

Total deaths
(for variables, for each population 

subset)

(matrix: population subset versus 
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(matrix: population subset versus 
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Baseline and counterfactual
(matrix: population subset versus 

variable bin) 

User input 
(user may change

variables, population, or
distribution if desired)

Predistribution calculations
(may or may not be needed,
depends on type of variable)

- Mean∗

Figure 2: Data flow model for the open-source PRIME Python application.

compared to the UK recommendation of 18 g/d. The two
papers provide information to policy makers about which
dietary recommendations should be prioritised in order to
improve population health outcomes and both concur that
the fruit and vegetables recommendation would deliver the
most health benefit. However, thesemodelled results can only
provide a partial guide for policy makers in the absence of

high quality estimates of the cost-effectiveness of population-
level dietary interventions [60].

The “lower risk guidelines” for alcohol consumption in
England are that men should not regularly drink more than
3 to 4 units per day, and women should not regularly drink
more than 2 to 3 units per day [61], where a unit is defined as
8 g of pure alcohol.The General Household Survey 2006 [62]
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Figure 3: Overall layout of the main page in the PRIME web
application. Input factors are set on the right, and outcomes are
returned on the left.

suggested that average alcohol consumption in England was
21 g/d in men and 10 g/d in women with 20% of men and 36%
of women defining themselves as nondrinkers. Therefore,
moving the population to consumption levels defined by the
“lower risk guidelines” would increase alcohol consumption
in the population with consequently negative health out-
comes. We used the PRIME to estimate the health impact
of moving the mean consumption of alcohol in drinkers
between 1 g/d and 48 g/d—such an analysis will balance the
positive effect of alcohol on coronary heart disease [30] with
the negative effects associated with some cancers [5] and liver
cirrhosis [32].Themodelling suggested that the optimal level
of alcohol consumption in England—that is, the level where
NCDmortality was reduced to aminimum—was 5 g/d (about
half a unit). Such a level of consumption would result in
4,579 (2,544 to 6,590) averted or delayed deaths a year or
approximately 3% of all deaths from partially alcohol-related
NCDs [13].This total included a small increase in deaths from
cardiovascular diseases that was offset by a large reduction in
mortalities from cancer and liver cirrhosis.

Variants of the PRIME have been used to explore the
impact of health-related food taxes and subsidies in the UK
[51, 53, 54] and Ireland [52]. Two of these papers considered
the potential unintended health consequences that result
from substitution behaviour when certain unhealthy food
items are taxed by using matrices of cross-price elasticities
derived from national trends in food spending [63]. Mytton
et al. [53] found that applying a 17.5% tax on food groups
that are the principal source of saturated fat in the diet
(whole milk, cheese, butter, cakes, pastries, and biscuits)
resulted in substitutions towards salty foods and away from
fruit and vegetables and as a result, despite the predicted
reduction in blood cholesterol levels, the scenario resulted
in an increase in mortality from cardiovascular disease. A
similar scenario was investigated by Nnoaham et al. [54], also
incorporating differences in results by socioeconomic groups,
and the authors found that a tax on sources of saturated
fat increased mortality in each income quintile in England.
Both papers also considered a revenue neutral policy, where

the taxes raised by targeting unhealthy foods were used to
subsidise fruit and vegetables, and these analyses suggested
that targeted taxes and subsidies can result in improvements
of health. For example, Nnoaham et al. [54] suggested that
such a scenariowould result in between 3,689 and 6,435 fewer
cardiovascular disease mortalities per year in England. Two
papers have used the PRIME to explore the effect of taxation
of sugar-sweetened beverages (SSBs) in the UK [51] and
Ireland [52] on obesity levels. Both sets of analyses used an
econometric model that estimated cross-price elasticities for
a range of beverages to examine how different socioeconomic
groups substitute between beverages after reacting to price
changes. The papers suggested that a tax on SSBs (10% in
Ireland and 20% in the UK) would result in a small mean
reduction of total calories in the population and hence a
small shift in the distribution of BMI in the population. This
small shift would result in 180,000 fewer obese people in the
UK. Surprisingly, the analyses suggest that this health effect
would be similar in high income groups and low income
groups, which suggest that the health benefit would not be
progressive. This is explained by SSB consumption and SSB
price sensitivity being broadly similar across income groups
in both Ireland and the UK.

The PRIME has also been used to investigate the health
impact of achieving low carbon diets in the UK [22,
55]. The Committee on Climate Change (CCC)—a quasi-
nongovernmental organisation that advises the UK Gov-
ernment on progress towards meeting the 2008 Climate
Change Act—included three food production scenarios in
its fourth carbon budget, which were aimed at reducing
greenhouse gas (GHG) emissions from the UK food sector
[57]. The most dramatic of these scenarios was a 50%
reduction in livestock production balanced by increases in
plant commodities (since livestock, especially ruminants, has
substantially higher carbon footprints than fruit, vegetables,
and cereals [64]), which the CCC report estimated would
result in a 19% reduction in UK agricultural GHG emissions
in comparison to 2005 levels. We set out to estimate what
would be the health impact of such a dramatic change
in the diet. We used data on current food consumption
from the Family Food Survey [65] and assumed that there
would be no intracategory food consumption changes but that
intercategory consumption change would follow those laid
out by the CCC scenarios (e.g., in the scenario the percentage
of total meat that is made up of chicken, pork, beef, and lamb
would remain the same as baseline, but the total amount of
meat consumption would reduce). The PRIME was used to
estimate the health impact of the scenario diets and suggested
that a 50% reduction in livestock would result in nearly
36,910 (30,192 to 43,592) deaths averted or delayed every year
and that the main factor for this large health impact is the
substitution of meat products with increased consumption of
fruit and vegetables. We also investigated the impact of the
scenario diet on micronutrients commonly found in animal
products and found that it results in a small reduction in
mean consumption of calcium and zinc, and a large reduction
in vitamin B12, but an increase in consumption of iron.
A second paper investigated the health impact of applying
GHG emissions tax on foods in order to encourage a low
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GHG diet [22]. Using a method that has been proposed
to estimate the shadow price of carbon [66] we set a tax
level of £2.72/tCO

2
e/100 g of food and then used comparable

estimates of GHG emissions for different food groups [64],
combined with data on UK imports and exports to set
taxation levels for different food groups. Predictably the tax
was set highest for beef and lamb, with a tax level of £1.76 and
£1.63 per kg of food, respectively. Using a similar econometric
model as designed for the earlier SSB tax papers, we estimated
the effect of this tax scenario on food consumption patterns
and used PRIME to estimate the health impact. The model
results suggested that a GHG tax would result in amoderately
healthier diet, with 1,207 (1,003 to 1,431) deaths averted or
delayed per year. The scenario also resulted in reductions of
GHGemissions by over 18MtCO

2
e per year and raised annual

tax revenue of over £2.0 billion.
Finally, the PRIME has also been used to estimate the

proportion of geographical health inequalities in the UK
that are due to variations in dietary quality [56] and to
compare dietary and pharmacological approaches to pre-
vention of heart disease [40]. The former paper applied
disease-specific mortality rates from England in 2007–09
to the Scottish, Welsh, and Northern Irish populations to
estimate the number of deaths that would occur in these
populations if there were no inequalities in health between
the four regions of the UK. The difference between actual
number of deaths and the number that would occur if no
inequalities existed in each country—the “mortality gap”—
was then estimated. We used the PRIME to estimate the
change inmortality in Scotland,Wales, and Northern Ireland
in the scenario that average nutritional quality of the diet
changed to equal the diet in England and used the results
to estimate how much of the mortality gap could be closed
if dietary inequalities were removed. The results suggested
that 81% (62% to 108%) of the gap in Wales and 81% (67% to
99%) of the gap in Northern Ireland were due to differences
in dietary quality, whereas only 40% (33% to 51%) of the gap
between Scotland and England was due to diet. The latter
paper—appearing in the Christmas edition of the BMJ—
compared the effect of extending statin therapy to all over
50s in the UK with an additional portion of fruit (an apple a
day) for all over 50s.The health impact of the increased statin
therapy was estimated using results from a meta-analysis of
RCTs [67] and the impact of the increased fruit consumption
was modelled using PRIME. Both scenarios resulted in
substantial decreases in annual mortality in the UK, with
an estimated 9,400 (7,000 to 12,500) fewer cardiovascular
mortalities in the statin scenario and 8,500 (6,200 to 10,800)
fewer cardiovascular mortalities in the fruit scenario.

6. Future Development of the PRIME

Development of the PRIME is currently heading towards
two objectives: to share the model widely and improve
transparency of methods and to develop longitudinal health
outcomes. The first of these objectives is addressed by the
“WEBPRIME” project, which aims to produce a user friendly
web application of the PRIME and is described in the
section “Development of Source Code for the PRIME Python

Program and Web Application” above. We hope to launch
the web application of the PRIME in 2015. One of the useful
features of the PRIME is that it is reasonably straightforward
to use in a number of different settings, because the data
input requirements are not demanding.The requirements for
the user are population-level estimates of current risk factor
distributions and disease-specific mortalities. However, a
drawback of this simplicity is that the health outcomes
estimated by the PRIME (deaths delayed or averted) are crude
and do not allow for temporal considerations of the health
impact and therefore the model cannot be used to estimate
the effect of risk factor scenarios on standard epidemiological
measures such as life expectancy or years of life lost or on
measures that incorporate morbidity such as health-related
quality of life. This drawback is being addressed by using the
PRIME as an input to multistate life tables model in a project
that is being funded by the European Commission which will
commence inOctober 2014. Usingmethods developed for the
ACE Prevention projects conducted in Australia [60], we will
build life tables model for the UK using projections of CVD
and cancer incidence and mortality rates. The PRIME will be
used to estimate PAFs (as described in “The Structure of the
PRIME” above) for scenarios, and these PAFs will be applied
to projected incidence rates in the multistate life tables model
in order to estimate disease progression in the modelled
scenario. Comparison of baseline and scenario results will
allow us to estimate longitudinal health impacts of changes
in NCD risk factors using the PRIME.

7. Future Challenges for NCD
Scenario Modelling

There are a number of different NCD scenario models that
have been developed with different aims and objectives in
mind. Some are designed to estimate the impact of changes
in risk factors on future health outcomes (e.g., the UK
Health Forum CVD microsimulation model [19] or the
DYNAMO model [18]). Some are designed to estimate the
cost-effectiveness of screening or preventative treatments for
NCDs (e.g., the CISNET life history models assessing cost-
effectiveness of cancer screening [68]), and some are designed
to provide a comparable framework for estimating the cost-
effectiveness of NCDprevention and treatment (e.g., the ACE
Prevention model [60]). It is important to be able to compare
both the methods used and the results produced by these
different models in order to have a greater understanding
of the impact of modelling assumptions. Recently, some
work has been conducted to compare the results of different
CHD policy models [69] and where possible further model
comparisons are needed. However, such projects are not
easy, as subtly different inputs and outcomes included in
scenario models mean that it is difficult to find scenarios
that can be run by different models. However, lessons could
be learnt from the Agricultural Model Intercomparison and
Improvement Project (AGMIP), a project that has developed
common future climate and population scenarios with which
to compare the results of nine agricultural trade models
[70]. The results of such comparisons can provide us with
greater confidence of scenario results when the models agree
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and also provide an assessment of structural uncertainty
around modelling results which is usually not addressed
by individual scenario modelling analyses. Here, “structural
uncertainty” refers to the uncertainty in model results that
is a result of the underlying assumptions and structure of
the model that generated the results and is separate from
“parametric uncertainty” which refers to the uncertainty
that is a result of parameters in the model being measured
with error (e.g., the PRIME uses relative risks from meta-
analyses as parameters, which are accompanied with error).
In order to aid comparisons between models a standardised
method of reporting scenario modelling results is required.
Standardised reporting guidelines have been developed for
subsets of NCD scenario modelling (e.g., cancer life history
models [68]) but are currently not available for prevention
scenarios such as those included in the analyses reviewed
here.

The PRIME and most other NCD scenario models do
not take account of the interaction between behavioural
risk factors for NCDs. This is mainly due to the lack of
data about such interaction terms within the peer-reviewed
literature—there are no meta-analyses that consider the size
of interactions between risk factors as they are rarely the focus
of epidemiological analysis. Another reason why interaction
terms are generally not considered in NCD scenario models
is that it would require the models to have data on the joint
distribution of risk factors within the population of interest
for the baseline scenarios. In practice, such data are rarely
available. If we assume that interaction terms are generally
positive (i.e., that the combined risk from two risk factors
is greater than the sum of its parts), then the absence of
interaction terms in NCD models will result in conservative
estimates of health effects. Another limitation associated
with the PRIME and other cross-sectional NCD scenario
models is that they are incapable of incorporating the effect
of time lag between exposure and disease outcome. This
produces two problems. Firstly, it is not clear when the results
predicted by the PRIME could be expected to be achieved,
as it is not clear how long after risk factor exposure has
changed we would expect health risk to change to the levels
predicted by the meta-analyses that parameterise the model.
A second problem is that the PRIME does not consider
lifetime exposure to risk factors when calculating PAFs. This
can potentially produce quite distorting effects. For example,
smoking prevalence in England peaks in early adulthood
[47]. The relatively low estimate of smoking prevalence in
older age groups (where the majority of NCDs occur) will
underestimate the impact of smoking on NCDs as it does not
adequately account for the high lifetime exposure to smoking
that the older cohort has built up.

At present, there are no NCDmodels that are designed to
predict future NCD rates which are purely based on amecha-
nistic relationship between risk factors and health outcomes.
Longitudinal scenario models either project current trends
in NCDs into the future in order to estimate baseline results
(e.g., ACE Prevention [60]) or assume that NCD rates will
remain constant in the baseline scenario (e.g., UK Health
Forummicrosimulation model [19]). This has two important
consequences. The first is that NCD models are not available

that can predict future changes in the course of disease,
such as inflection points, that may result from increases in
the prevalence of adverse risk factors such as obesity and
diabetes.The lack of suchmodels has consequences for future
healthcare resource planning. The second consequence is
that developed scenario models are impossible to validate
against future measures of NCD rates, because scenario
models are not designed to predict the future but rather to
estimate the difference between two future scenarios. We do
not currently have access to predictive mechanistic models
because of a lack of population-level data on important
epidemiological measures, such as the joint distribution of
risk factors within populations, the time lag associated with
risk factors and onset of disease, and interactions between
different risk factors. Although joint distributions of some
risk factors are available from national health surveys, it
is rare to find a survey that measures all behavioural risk
factors. And although single prospective cohort studies with
multiple measures of risk factors can explore the time lag
between exposure and health outcome, there are yet to be
comprehensive meta-analyses that explore the effect of time
lag. It may be possible to learn from infectious disease
modellers, where model calibration is applied to estimate
unknown model parameters within a known theoretical
disease framework [71] in order to develop truly predictive
NCD models in the future.

8. Conclusion

Increasing levels of computing power have allowed NCD
modellers to develop more sophisticated models that can
provide insight into the health impact of population-level
interventions that are not well suited to standard epidemi-
ological study designs or to extrapolate results from small
studies to estimate the impact at the level of the population.
The PRIME is a relatively data light model that is openly
available to researchers and policy makers to estimate the
population-level health impact of changes in diet, physical
activity, and alcohol and tobacco consumption that will
be launched as a web application in 2015. Future work to
incorporate modelling developments in other fields in order
to improve the PRIME and other NCD scenario models is
essential in order to improve the predictive accuracy of such
models and model comparison projects can allow for greater
transparency, improved confidence in modelling results, and
an assessment of the structural uncertainty inherent in
modeling projects.
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